A Guide to Optimal Robotic & Automated Welding

Getting Started with Automated Welding Systems

 

Automated welding is the way many manufacturers are fabricating these days. With that, there are a lot of misconceptions about how easy automated systems are to use and if the benefits outweigh the struggles.

Automatic welding has a host of clear perks such as improved weld quality, faster cycle times, and a better working environment for welders. A common restriction is that robots require a certain skillset to program and run the equipment smoothly. Don’t worry, the technology has advanced greatly, leading to simple ways to accomplish quality automated welding without the hassle.

We’ve unpacked the most optimal process for getting started with automated welding systems so you can benefit from high-quality welding with less stress!

  

1. Define Welding Type & Tasks

With any welding project, you’ll need to first define and understand the task at hand.  What type of welding will be needed? Which steps will the robot or automated welding machine need to perform? There are a variety of different welding types—below are some of the most common:

  • Circumferential (Rotary) welding
  • Linear (Seam) welding
  • Resistance (Spot) welding

The technical specialists at Bancroft Engineering can help you confidently define the scope of your welding project and automated system requirements so your job will be successful—get in touch with us.

2. Secure the Needed Equipment

Now that you’ve clearly defined the task and welding type needed, it’s time to pick the right automated welding system—whether that be a robot or semi-automated welding machine. Most welding systems require the following pieces of hardware/software:

  • The robot or the welding machine itself
  • The welding tools & fixtures
  • A user-friendly programming interface
  • Welding power supply and consumables
  • Safety measures such as barriers or sensors
automated welding machine
Universal Welding Robot

3. Determine Proper Weld Settings

There are basic guidelines for picking weld settings, but they can vary from model to model and certainly from brand to brand.  To get to the best weld setting, a number of considerations must be made including:

  • Type of metal you are welding
  • Cleanliness of the joint
  • Joint design
  • Material thickness
  • Proper wire size
  • Voltage
  • Wire feed speed
  • Travel speed
  • Torch position
  • Shielding gas

This can seemingly be a daunting task, but any good welding equipment manufacturer will have engineers on staff to assist with this process.

semi automated welding postioner
TT500 Welding Positioner

4. Program, Test, & Debug

Programming an automated welding machine requires a trained specialist for the initial start-up.  This only needs to be done upon setting up your system for the first time.  General maintenance programs and welding schedules can be created and modified with little training throughout the lifestyle of the system.

Once your system is in place and programmed correctly, it’s time to sit back and watch the system make magic happen!

 

5. Team Up with the Right Automated Welding Provider

Lastly, team up with a reputable welding automation provider who can walk with you every step of the way. From concept to installation and run-off, the team at Bancroft Engineering is here to ensure your new welding system is successful!

 

Bancroft offers both customized welding machines and a variety of standardized semi-automatic welding equipment in stock such as positioners, Welda-Round rotary welders, seam welders, weld-lathes and much more!

Read More
GMAW welding nozzle automated welder

How to Choose the Right GMAW Nozzle

Choosing equipment that provides the highest weld quality goes all the way down to the fine detail. The right welding nozzles—or contact tip—make a significate difference between running an efficient and productive shop or dealing with downtime to address problems. Gas metal arc welding (GMAW) guns have a variety of welding nozzle designs and styles to choose from—making it tricky to choose the right nozzle for your weld process.

The welding experts at Bancroft Engineering know a thing or two about optimizing all different types of welding processes—from small to large scale parts to automated welding systems. Let’s get into the common nozzle materials, designs and features so you can be equipped to make the best choice.

 

About Weld Nozzles 

The main purpose of a welding nozzle is to direct the shielding gas into the weld puddle in the best way possible. When selecting the right GMAW nozzle, you’ll need to keep in mind your welding application and joint access as some designs offer better gas coverage, while others allow better access.

Welding Nozzle Materials

The two most common materials used for welding nozzles are either copper or brass. Copper tends to be a better choice for overall spatter resistance, they also manage heat well at higher temperatures. Brass welding nozzles also have good spatter-resistant properties, but only in lower-amperage applications. Nickle-plated welding nozzles are also available and provide improved durability. Nickle is able to deflect heat, keeping the nozzle cool while welding. This allows for a longer life span and often is a preferred choice for robotic welding applications.

 

Weld Nozzle Shapes and Designs

Nozzle shapes include straight, bottleneck and short/long tapper styles. A straight welding nozzle usually has a larger inside diameter, but don’t offer the best joint access. If joint access is needed, a bottleneck nozzle is a better option. Bottleneck shapes are especially good for automated welding systems. Both short and long taper nozzles are also a common choice for achieving good joint access. When selecting your nozzle shape, keep in mind you’ll want to allow for the proper amount of gas to flow to the weld puddle. It’s best to use as large of a nozzle as possible that still allows easy access to the weld joint. This will ensure the greatest shielding gas flow and keep spatter to a minimum.

Threaded Welding Nozzle
Threaded Welding Nozzle
slip-on welding nozzle
Slip-on Welding Nozzle

Threaded vs. Slip-On Nozzles

The main distinction between threaded and slip-on welding nozzles comes down to speed and security of the connection. Threaded nozzles have a secure connection to the welding torch, preventing shielding gas leaks. This also helps align the contact tip correctly so the nozzle will not be off-center. A down-side to threaded nozzles is that they can be difficult to remove and replace—especially if spatter bridges into the threads. Slip-on welding nozzles are easy to remove and replace and are typically more cost-effective than treaded nozzles. Slip-on nozzles are ideal for welding applications that produce more spatter because their design protects the other welding consumables.

 

Custom Welding Equipment Builders & Welding Nozzle Experts

Weld gun nozzles play a critical role in your overall welding operation. Choosing the proper nozzle for the job will reduce welding defects, rework and downtime—this ultimately shows up in your bottom line!  Bancroft Engineering is a leading supplier of custom welding equipment for manual, semi-automatic to fully automated welding systems located in WI, USA.  Give us a call today at 262-786-1880 or email: sales@bancrofteng.com

Read More